SOME NEW σ -BONDED ARYL–PLATINUM COMPLEXES

SERGIO SERGI, VITTORIO MARSALA, ROSARIO PIETROPAOLO AND FELICE FARAONE Istituto di Chimica Generale ed Inorganica, Università di Messina, 98100-Messina (Italy) (Received January 12th, 1970)

SUMMARY

The preparations are described of some new complexes *trans*-[PtL₂RX] and *cis*- and *trans*-[PtL₂R₂] (where $L=S(C_2H_5)_2$ or $Se(C_2H_5)_2$, R= phenyl, *o*-tolyl or mesityl and X= halogen). The *trans*-[PtL₂(mesityl)₂] complexes are the first σ -bonded demesityl derivatives of Pt¹¹.

The factors determining the stability of these complexes and the IR stretching frequencies v(Pt-C) and v(Pt-C) are discussed.

INTRODUCTION

Chatt and Shaw^{1,2} reported the preparation of complexes with Pt–C and Ni–C bonds stabilized by phosphine and arsine ligands. Analogous Pd^{II} complexes have also been prepared³

We now describe the preparation of some new complexes trans-[PtL₂RX] and cis- and trans-[PtL₂R₂], (where $L=S(C_2H_5)_2$ or $Se(C_2H_5)_2$, R= phenyl, o-tolyl or mesityl and X=Cl, Br, or I).

EXPERIMENTAL

Apparatus

IR spectra (nujol mull) were recorded on a Perkin-Elmer 457 grating spectrophotometer. Dielectric constants were measured with a WTW Multidekameter DK 06, and dipole moments were evaluated by the method of Everard, Hill and Sutton⁴.

Reactions

All reactions were carried out under nitrogen.

trans-Bis(diethylselenide)halogeno(phenyl)platinum, $Pt[Se(C_2H_5)_2]_2(C_6H_5)X$. trans-Bis(diethylselenide)dichloroplatinum (2.00 g; 3.36 mmoles) in dry ether (30 ml) was added to an ethereal solution of phenyllithium (8.8 mmoles). After 5 h the mixture was hydrolysed, and the organic layer separated and evaporated to dryness. The residue was chromatographed on alumina, and elution with chloroform gave trans-bis(diethylselenide)chloro(phenyl)platinum as colourless needles from methyl alcohol. Yield 40%. m.p. 64°. (Found: C, 28.23; H, 4.50; Cl, 6.00. $C_{14}H_{25}CIPtSe_2$ calcd.: C, 28.94; H, 4.34; Cl, 6.26%.) *trans*-Bis(dicthylselenide)bromo- and -iodo(phenyl)platinum were prepared by metathetical replacement from the *trans*-bis(diethylselenide)chloro(phenyl)platinum with LiX salts in methyl alcohol.

trans- and cis-Bis(diethylsulphide)diphenylplatinum, $Pt[S(C_2H_5)_2]_2(C_6H_5)_2$ trans-Bis(diethylsulphide)dichloroplatinum (2.5 g; 5.6 mmoles) was similarly treated with an ethereal solution of phenyllithium (15 mmoles) for 4 h. Working-up as above gave trans-Pt[S(C_2H_5)_2]_2(C_6H_5)_2 as colourless needles from ether. Yield 20%, m.p. 99-101°. (Found: C, 45.0; H, 5.73. $C_{20}H_{30}PtS_2$ calcd.: C, 45.11; H, 5.68%) cis-{Pt[S(C_2H_5)_2]_2(C_6H_5)_2} was obtained as colourless needles from chloroform. Yield 60%, m.p.165° with decompn. (Found: C, 45.3; H, 5.6. $C_{20}H_{30}PtS_2$ calcd.: C, 45.11; H, 5.68%.)

trans-Bis(diethylselenide)chloro(o-tolyl)platinum, $Pt[Se(C_2H_5)_2]_2(o-Tol)Cl$. An ethereal solution of trans-Pt[Se(C_2H_5)_2]_2Cl_2 (2.0 g, 3.36 mmoles) was added to o-tolyllithium (9 mmoles) in ether. After 2 h working-up as above gave trans-Pt[Se-C_2H_5)_2]_2(o-Tol)Cl as needles from ether. Yield 50%, m.p. 63-65°. (Found: C, 30.12; H, 4.50; Cl, 5.90. C₁₅H₂₇ClPtSe₂ calcd.: C, 30.18; H, 4.57; Cl, 5.97%.)

trans-Bis(diethylsulphide)di-o-tolylplatinum, $Pt[S(C_2H_5)_2]_2(o-Tol)_2$ and transbis(diethylsulphide)chloro(o-tolyl)platinum, $Pt[S(C_2H_5)_2]_2(o-Tol)Cl.$ 0.5 g (1.12 mmoles) of trans- $Pt[S(C_2H_5)_2]_2Cl_2$ in ether was similarly treated with o-tolyllithium in ether (3 mmoles). After 2 h the usual working-up gave a crude product which was recrystallized several times from ether to give first trans- $Pt[S(C_2H_5)_2]_2(o-Tol)_2$. Yield 50%, m.p. 118–122°. (Found: C, 47.49; H, 6.09. $C_{22}H_{34}PtS_2$ calcd.: C, 47.30; H, 6.10%); second trans- $Pt[S(C_2H_5)_2]_2(o-Tol)Cl$ was obtained. Yield 20%, m.p. 103°. (Found: C, 35.90; H, 5.40; Cl, 7.00. $C_{15}H_{27}ClPtS_2$ calcd.: C, 35.88; H, 5.43; Cl, 6.97%).

trans-Bis(diethylselenide)dimesitylplatinum, $Pt[Se(C_2H_5)_2]_2(mesityl)_2$. An ethereal solution of trans-Pt[Se(C₂H₅)₂]₂Cl₂ (1.4 g; 2.56 mmoles) was added to mesityllithium (6.6 mmoles) in ether. After 2 h working-up gave a crude product which was recrystallized from methanol to give trans-Pt[Se(C₂H₅)₂]₂(mesityl)₂. Yield 50%, m.p. 192° with decompn. (Found: C, 44.13; H, 5.95. C₂₆H₄₂PtSe₂ calcd.: C, 44.10; H, 5.90%.)

trans-Bis(diethylsulphide)dimesitylplatinum, Pt[$S(C_2H_5)_2$]₂(mesityl)₂. 1.0g(2.24 mmoles) of trans-Pt[$S(C_2H_5)_2$]₂Cl₂ in ether was added to mesityllithium (5 mmoles) in ether. After 2 h the usual working-up followed by recrystallization from methyl alcohol gave trans-Pt[$S(C_2H_5)_2$]₂(mesityl)₂. Yield 50% m.p. 180° with decompn. (Found: C, 50.95; H, 6.86. C₂₆H₄₂PtS₂ calcd.: C, 50.95; H, 6.89%.)

Attempts to prepare complexes with a $Pt-CH_3$ bond. An ethereal solution of trans-[PtL₂X₂] (L=S(C₂H₅)₂, Se(C₂H₅)₂) was added to CH₃Li in ether. Hydrolysis with ice, at 0°, afforded metallic platinum.

DISCUSSION

The stability of σ -bonded organo-derivatives of platinum(II) complexes is generally attributed to the energy difference (ΔE) between the d_{x-y} non bonding metal orbital and $d_{x^2-y^2}$ antibonding orbital. The ligands such as the phosphines and arsines may cause an increase in ΔE and so contribute to a greater kinetic stability of the M-C bond^{1,2}.

Arylplatinum compounds show a greater resistance to thermal decomposition

and cleavage reactions than their alkyl analogues⁵. This can be attributed to overlap between the platinum filled 5d orbitals and the π -orbitals of the aromatic system. The results of NMR measurements on *trans*-[Pt(PEt₃)₂(*m*- or *p*-FC₆H₄)X] complexes confirm that there is a general drift of electrons from platinum to the aromatic group by both inductive and π -bonding effects⁶. On the other hand S(C₂H₅)₂ and Se(C₂H₅)₂ ligands exert their influence mainly by inductive electron release to Pt⁷. The stability of the Pt-C bonds in *trans*-[PtL₂RX] and *cis*- and *trans*-[PtL₂R₂] [L=S(C₂H₅)₂, Se(C₂H₅)₂; R=phenyl, *o*-tolyl, mesityl] could thus be due to the simultaneous presence of L and aryl ligands. It is noteworthy that analogous complexes containing a Pt-methyl bond have not been prepared, neither have Ni¹¹ σ -bonded methyl derivatives been obtained².

In Table 1 are shown values of dipole moments and v(Pt-C) and v(Pt-Cl).

TABLE 1

DIPOLE MOMENTS AND IR FREQUENCIES

Complex	μ (D)	v(Pt-C) (cm ⁻¹)	v(Pt–Cl) (cm ⁻¹)
trans-Pt[Se(C_2H_5) ₂] ₂ (C_6H_5)Cl	······································	505 vw	266 s
$trans-Pt[Se(C_2H_5)_2]_2(C_6H_5)Br$		496 vw	
trans-Pt[Se(C_2H_5)2]2(C_6H_5)I	3.2	490 vw	
trans-Pt[Se(C ₂ H ₅) ₂] ₂ (o-Tol)Cl	2.9	442 m	262 s
$trans-Pt[Se(C_2H_5)_2]_2(mesityl)_2$	1.42		
$trans-Pt[S(C_2H_5)_2]_2(C_6H_5)_2$	1.8	502 s	
cis-Pt[S(C ₂ H ₅) ₂] ₂ (C ₆ H ₅) ₂		495 m	
		478 m	
trans-Pt $[S(C_2H_5)_2]_2$ (o-Tol)Cl	2.78	442 m	265 s
trans-Pt[S(C ₂ H ₅) ₂] ₂ (o-Tol) ₂	2.1	446 m	
trans-Pt[S(C ₂ H ₅) ₂] ₂ (mesityl) ₂	1.94		

The v(Pt-C) frequencies have been assigned on the basis of values reported in the literature^{8,9}. No bands arising from the neutral coordinated ligands were observed in the region 550-400 cm⁻¹.

The configurations of the complexes were established by means of dipole moment measurements and confirmed by IR data. The monosubstituted [PtL₂- $(C_6H_5)X$] exhibits a very low value for v(Pt-Cl) as expected for a complex in which a halogen ligand is in *trans* position to a strong "*trans*-activating" group.

The v(Pt-Cl) value is insensitive to change in the aryl ligands. In the complexes trans-Pt[Se(C₂H₅)₂]₂(C₆H₅)X, the v(Pt-C) values are in the order Cl > Br > I.

It is noteworthy that $trans-[PtL_2(mesityl)_2] [L=S(C_2H_5)_2, Se(C_2H_5)_2]$ are the only known σ -bonded dimesityl derivatives of Pt^{II}, but analogous Ni^{II} complexes have been obtained². X-ray measurements are in progress to confirm the structures of the mesityl complexes.

ACKNOWLEDGEMENTS

We thank Prof. B. Ricca and Dr. L. Cattalini for stimulating discussions and Italian Council of Research (C.N.R.) Rome for financial support.

REFERENCES

- 1 J. CHATT AND B. L. SHAW, J. Chem. Soc., (1959) 705; (1959) 4020.
- 2 J. CHATT AND B. L. SHAW, J. Chem. Soc., (1960) 1718.
- 3 G. CALVIN AND G. E. COATES, Chem. Ind. (London), (1958) 160; J. Chem. Soc., (1960) 2008.
- 4. K. B. EVERARD, R. A. W. HILL AND L. SUTTON; Trans. Faraday Soc., 46 (1950) 417.
- 5 R. J. CROSS, Organometal. Chem. Rev., 2 (1967) 97.
- 6 G. W. PARSHALL, J. Amer. Chem. Soc., 88 (1966) 704; 86 (1964) 5367.
- 7 J. CHATT, L. A. DUNCANSON AND L. M. VENANZI, J. Chem. Soc., (1955) 4461.
- 8 D. M. ADAMS, J. CHATT AND B. L. SHAW, J. Chem. Soc., (1966) 2047; D. M. ADAMS, J. CHATT, J. GER-RATT AND A. D. WESTLAND, J. Chem. Soc., (1964) 734.
- 9 P. L. GOGGIN AND R. S. GOODFELLOW, J. Chem. Soc. A, (1966) 1462.

J. Organometal. Chem., 23 (1970) 281-284